Synthetic hydrogel mimics of the nuclear pore complex display selectivity dependent on FG-repeat concentration and electrostatics.

نویسندگان

  • Alicia K Friedman
  • Lane A Baker
چکیده

Synthetic hydrogels were utilized to explore influence of both charge and phenylalanine-glycine (FG) repeat concentration on translocation of select proteins. Hydrogels studied represent a biomimetic platform of the nuclear pore complex (NPC) found in eukaryotic cells. Polyacrylamide/phenylalanine-serine-phenylalanine-glycine (FSFG) peptide copolymers have previously demonstrated similar selectivity to native NPCs. Entry of a nuclear transport receptor (Impβ) into hydrogels was monitored with fluorescence microscopy and observed to be greater within gels that contained larger concentrations of FG peptide. Low-resolution structural studies of gels demonstrated changes in morphology and porous network dimensions as FG-repeat concentration was varied. Copolymerization of charged acrylates within the polyacrylamide/FSFG matrix was performed to produce charged hydrogels. Enhanced entry of Impβ, which is negatively charged, was observed in positively charged hydrogels, whereas entry was greatly diminished in negatively charged gels. Synthetic NPC mimics provide a useful testbed for further investigation of nucleocytoplasmic transport and may illuminate new routes for biomimetic separations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties.

Nuclear pore complexes permit rapid passage of cargoes bound to nuclear transport receptors, but otherwise suppress nucleocytoplasmic fluxes of inert macromolecules >/=30 kilodaltons. To explain this selectivity, a sieve structure of the permeability barrier has been proposed that is created through reversible cross-linking between Phe and Gly (FG)-rich nucleoporin repeats. According to this mo...

متن کامل

A Saturated FG-Repeat Hydrogel Can Reproduce the Permeability Properties of Nuclear Pore Complexes

The permeability barrier of nuclear pore complexes (NPCs) controls the exchange between nucleus and cytoplasm. It suppresses the flux of inert macromolecules > or = 30 kDa but allows rapid passage of even very large cargoes, provided these are bound to appropriate nuclear transport receptors. We show here that a saturated hydrogel formed by a single nucleoporin FG-repeat domain is sufficient to...

متن کامل

Spatial structure of disordered proteins dictates conductance and selectivity in nuclear pore complex mimics

Nuclear pore complexes (NPCs) lined with intrinsically disordered FG-domains act as selective gatekeepers for molecular transport between the nucleus and the cytoplasm in eukaryotic cells. The underlying physical mechanism of the intriguing selectivity is still under debate. Here, we probe the transport of ions and transport receptors through biomimetic NPCs consisting of Nsp1 domains attached ...

متن کامل

Brownian Dynamics Simulation of Nucleocytoplasmic Transport: A Coarse-Grained Model for the Functional State of the Nuclear Pore Complex

The nuclear pore complex (NPC) regulates molecular traffic across the nuclear envelope (NE). Selective transport happens on the order of milliseconds and the length scale of tens of nanometers; however, the transport mechanism remains elusive. Central to the transport process is the hydrophobic interactions between karyopherins (kaps) and Phe-Gly (FG) repeat domains. Taking into account the pol...

متن کامل

Amyloid-like interactions within nucleoporin FG hydrogels.

The 62 kDa FG repeat domain of the nucleoporin Nsp1p forms a hydrogel-based, sieve-like permeability barrier that excludes inert macromolecules but allows rapid entry of nuclear transport receptors (NTRs). We found that the N-terminal part of this domain, which is characterized by Asn-rich inter-FG spacers, forms a tough hydrogel. The C-terminal part comprises charged inter-FG spacers, shows lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Soft matter

دوره 12 47  شماره 

صفحات  -

تاریخ انتشار 2016